Supelco_®

1.10003.0001

MQuant® Kupfer-Test

1. Methode

Kupfer(II)-Ionen werden durch ein Reduktionsmittelgemisch zu Kupfer(I)-Ionen reduziert. Diese bilden mit 2,2'-Bichinolin (Cuproin) einen violetten Komplex. Die Kupfer-Konzentration wird halbquantitativ durch visuellen Vergleich der Reaktionszone des Teststäbchens mit den Feldern einer Farbskala ermittelt.

2. Messbereich und Anzahl der **Bestimmungen**

Messbereich / Abstufung der Farbskala	Anzahl der Bestimmungen	
10 - 30 - 100 - 300 mg/l Cu	100	

3. Anwendungsbereich

Der Test erfasst sowohl Kupfer(II)- als auch Kupfer(I)-Ionen. Er ist auch zum Nachweis von Kupfer in metallischen Materialien und Oberflächen geeignet (s. Abschnitt 7).

Probenmaterial:

Trinkwasser Schwimmbadwasser Abwasser, speziell aus der Galvanik- und Druckindustrie Legierungen

4. Einfluss von Fremdstoffen

Dieser wurde individuell an Lösungen mit 30 bzw. 0 mg/l Cu überprüft. Bis zu den in der Tabelle angegebenen Fremdstoffkonzentrationen wird die Bestimmung noch nicht gestört. Kumu-lative Effekte wurden nicht geprüft, sind jedoch nicht auszuschließen.

Fre	Fremdstoffkonzentration in mg/l						
Ag+	1000	Fe ²⁺	1000	NH ₄ +	1000		
Ag+ Al ³⁺	1000	Fe ³⁺	1000	Ni ²⁺	1000		
Ba ²⁺ Ca ²⁺ Cd ²⁺	1000	[Fe(CN)	₅] ⁴⁻ 1	NO ₂ -	1000		
Ca ²⁺	1000	[Fe(CN)	,]³- 1	NO ₃ -	1000		
	1000	I-	250	Pb ²⁺	1000		
CI-	1000	K ⁺	1000	PO ₄ 3-	1000		
CN-	1	Mg ²⁺	1000	SO ₃ 2-	1000		
Co ²⁺ CrO ₄ ²⁻	1000	MnO ₄ -	1000	SO ₄ 2-	1000		
CrO ₄ ²⁻	500	Na ⁺	1000	Zn ²⁺	1000		

5. Reagenzien und Hilfsmittel

Die Teststäbchen sind - bei +15 bis +25 °C verschlossen aufbewahrt - bis zu dem auf der Packung angegebenen Datum verwendbar.

Packungsinhalt:

Dose mit 100 Teststäbchen

Weitere Reagenzien:MQuant® Universalindikatorstäbchen pH 0 - 14, Art. 109535 Natriumacetat wasserfrei zur Analyse EMSURE®, Art. 106268 Schwefelsäure 0,5 mol/l Titripur®, Art. 109072 Kupfer-Standardlösung Certipur®, 1000 mg/l Cu, Art. 119786

6. Vorbereitung

- · Proben mit mehr als 300 mg/l Cu sind mit dest. Wasser zu verdünnen.
- pH-Wert soll im Bereich 2 6 liegen. Falls erforderlich, Probe mit Natriumacetat puffern bzw. pH mit Schwefelsäure einstellen.

7. Durchführung

Reaktionszone des Teststäbchens **1 Sekunde** in die vorbereitete Probe (**15 - 25 °C**) eintauchen.

Überschüssige Flüssigkeit vom Stäbchen abschütteln und **nach 30 Sekunden** Farbe der Reaktionszone bestmöglich einem Farbfeld des Etiketts zuordnen. Zugehörigen Messwert in mg/l Cu ablesen.

Hinweise zur Messung:

- Nach Ablauf der angegebenen Reaktionszeit kann sich die Reaktionszone weiter verfärben. Dies darf für die Messung nicht berücksichtigt werden.
- Entspricht die Farbe der Reaktionszone dem dunkelsten Farbton der Farbskala oder ist sie intensiver, muss die Messung an neuen, jeweils verdünnten Proben wiederholt werden, bis ein Wert kleiner 300 mg/l Cu erhalten wird. Beim Analysenergebnis ist die Verdünnung (s. auch Abschnitt 6) entsprechend zu berücksichtigen:

Analysenergebnis = Messwert x Verdünnungsfaktor

Bestimmung auf metallischen Oberflächen:

Reaktionszone des Stäbchens mit Wasser anfeuchten und sie ca. 10 - 30 Sekunden leicht auf die zu prüfende Oberfläche (z.B. einer Münze) drücken. Die erhaltenen Messergebnisse sind nur Orientierungswerte. Eine Violettfärbung wird noch durch 0,5 µg Kupfer hervorgerufen.

8. Verfahrenskontrolle

www.ga-test-kits.com.

Überprüfung von Teststäbchen und Handhabung: Kupfer-Standardlösung mit dest. Wasser auf 100 mg/l Cu verdünnen und wie in Abschnitt 7 beschrieben analysieren. Zusätzliche Hinweise unter

9. Hinweis

Dose nach Entnahme des Teststäbchens umgehend wieder verschließen.

